

DOI: 10.1002/anie.201104305

Capture and Visualization of Hydrogen Sulfide by a Fluorescent Probe**

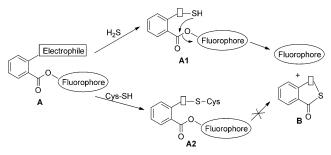
Chunrong Liu, Jia Pan, Sheng Li, Yu Zhao, Lisa Y. Wu, Clifford E. Berkman, A. Richard Whorton, and Ming Xian*

Hydrogen sulfide (H₂S) has been known as a toxic pollutant for many years. However, this molecule has been recently recognized as the third gaseous transmitter (the other two are nitric oxide and carbon monoxide). [1-3] The production of H₂S in mammalian systems has been attributed to at least three endogenous enzymes:^[4-7] cystathionine β-synthase (CBS), cystathionine γ-lyase (CSE), and 3-mercaptopyruvate sulfurtransferase (MPST). These enzymes use cysteine or cysteine derivatives as substrates and convert them into H₂S within different organs and tissues. In addition to these enzymatic pathways, there are also a range of comparably simple chemical events that may liberate H₂S from the intracellular pool of "labile" sulfur, for example, from the "sulfane sulfur" pool (compounds containing sulfur atoms bound only to other sulfur atoms).[8] The production of endogenous H₂S and exogenous administration of H₂S have been demonstrated to exert protective effects in many pathologies. For example, H₂S has been shown to relax vascular smooth muscle, induce vasodilation of isolated blood vessels, and reduce blood pressure. H₂S can also inhibit leukocyte adherence in mesenteric microcirculation during vascular inflammation in rats, suggesting H₂S is a potent anti-inflammatory molecule. Additionally, it has become evident that H2S is a potent antioxidant and, under chronic conditions, can up-regulate antioxidant defense. Despite the rising interest in H₂S research, fundamental questions regarding regulation of its production, its mechanism of action, and its destruction remain. A critical debate in the field involves the biologically relevant levels of H₂S as current reports varying over 10⁵-fold concentration range.^[9-12] Obviously, accurate and reliable measurement of H₂S concentrations in biological samples is needed and can provide useful information to understand the function of H₂S. Currently, the major methods for H₂S detection are colorimetric and electrochemical assays, gas chromatography, and sulfide precipitation. [12-16] These methods often require complicated sample processing. Given the

high reactivity of H_2S , these methods can yield variable results. [9-12] Fluorescence-based assays could be useful in this field because of their high sensitivity and convenience. However, fluorescence methods for H_2S detection, especially for real-time detection in biological samples, are still very limited so far. [17-19] Herein, we report a reaction-based fluorescent turn-on strategy for the detection of H_2S .

We envisioned that H₂S is a reactive nucleophile in biological systems that can participate in nucleophilic substitution. To detect H₂S selectively, the key is to differentiate H₂S from other biological nucleophiles, especially thiols such as cysteine and glutathione. Theoretically, H₂S can be considered a nonsubstituted thiol. It can undergo nucleophilic reaction twice, whereas other thiols such as cysteine are monosubstituted thiols that can only undergo nucleophilic reaction once. On the basis of this property, we expected that compounds containing bis-electrophilic enters could be useful reagents for H₂S detection. As shown in Scheme 1, H₂S should react with the most electrophilic component of a fluorescent probe such as A to form a free SH containing intermediate A1. If another electrophile is presented at suitable position, such as the ester group shown in A1, the SH group should undergo a spontaneous cyclization to release the fluorophore and form product B. This strategy not only can capture H₂S as a stable and analyzable product **B**, but also will allow us to visualize H₂S-related signal through a convenient and sensitive fluorescence measurement. We envisioned that substrate A could also react with biological thiols such as cysteine. However, product A2 should not undergo the cyclization to release the fluorophore. Therefore, the fluorescent signal should be selective only for H₂S.

With this idea in mind, we designed a reactive disulfidecontaining probe (compound 1). This compound was prepared from thiosalicylic acid 2 in two steps using the procedure shown in Scheme 2. The fluorescence property of this probe was tested in aqueous phosphate-buffered saline


[*] Dr. C. Liu, J. Pan, Y. Zhao, L. Y. Wu, Prof. C. E. Berkman, Prof. M. Xian Department of Chemistry, Washington State University Pullman, WA 99164 (USA) E-mail: mxian@wsu.edu

Dr. S. Li, Prof. A. R. Whorton Department of Pharmacology & Cancer Biology

Duke University Medical Center, Durham, NC 27710 (USA)
We thank Prof. Jeanne McHale for her help with fluorescent

[**] We thank Prof. Jeanne McHale for her help with fluorescence measurements. This work was supported in part by the NIH (R01GM088226 to M.X.).

Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/anie.201104305.

Scheme 1. Proposed fluorescent turn-on strategy.

Communications

Scheme 2. Synthesis of fluorescent probe **1.** EDC = 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride; DMAP = 4-dimethylaminopyridine; DCM = dichloromethane.

(PBS) solution (pH 7.4). Compound 1 (fluorescence quantum yield: Φ = 0.003) adopted a closed lactone conformation and exhibited no absorption features in the visible region (see the Supporting Information). We found that probe 1 reacted rapidly with H₂S to generate fluorophore 6 (Φ = 0.392) and benzodithiolone 7 in good yields (Scheme 3). In these experiments, NaHS was used as the equivalent of H₂S. It is known that in aqueous state under the physiological pH of 7.4, the major form of H₂S exists as HS⁻; the ratio of HS⁻/H₂S is approximately 3:1.^[9]

As shown in Figure 1, the reaction of **1** with H₂S yielded a significant fluorescence signal. Control experiments using cysteine or glutathione did not lead to any fluorescence

Scheme 3. Fluorescent probes and reaction with H₂S.

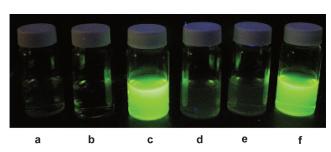


Figure 1. Fluorescent images of probe 1: a) 1 only (100 μm), b) NaHS only (50 μm), c) 1 (100 μm) + NaHS (50 μm); d) 1 (100 μm) + cysteine (50 μm); e) 1 (100 μm) + glutathione (50 μm), f) 1 (100 μm) + glutathione (50 μm) + NaHS (50 μm), in a mixture of PBS solution (pH 7.4) and CH₃CN (9:1).

increase. As expected, when H_2S and thiols such as glutathione (GSH) co-existed, we still observed strong fluorescence. These results demonstrated that $\bf 1$ was a selective fluorescent probe for H_2S .

The turn-on responses of 1 to H_2S and other biological thiols were also measured by a spectrofluorometer. As indicated in Figure 2, the fluorescence intensity of 1 increased dramatically (55–70-fold) if H_2S was presented in the solution (even when H_2S and other thiols were present together). In addition, the maximum intensity was reached in 1 h, which suggested the reaction was fast.

To demonstrate the efficiency of probe 1 in the measurement of H_2S concentration, 1 was treated with H_2S under a series of different concentrations to obtain a standard curve of emission intensity versus H_2S concentration. The concentration of compound 1 was maintained at $100~\mu\text{M}$, while the concentrations of NaHS varied from 0 to $10~\mu\text{M}$. As shown in Figure 3, the fluorescent signal was indeed linearly related to the concentration of NaHS in such concentration range. These results demonstrated that probe 1 could detect H_2S both qualitatively and quantitatively.

Next, we used plasma to investigate the potential of probe 1 for use in the detection of H_2S in complex systems. Bovine plasma containing NaHS at different concentrations (0, 50, 100, and 500 μ m) were prepared first. These concentrations were within the range of those that have been used to elicit

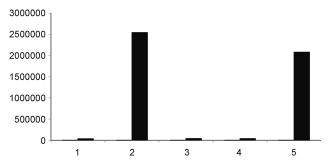


Figure 2. Fluorescence response of probe 1 toward H₂S and other thiols: 1) 1 only (100 μm), 2) 1 (100 μm) + NaHS (50 μm); 3) 1 (100 μm) + cysteine (50 μm); 4) 1 (100 μm) + glutathione (50 μm), 5) 1 (100 μm) + glutathione (50 μm) + NaHS (50 μm); measured in a mixture of PBS buffer (pH 7.4) and CH₃CN (9:1), λ_{ex} 465 nm, 25 °C.

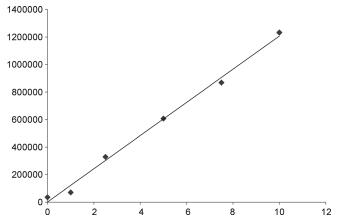


Figure 3. Linear correlation of fluorescent intensity toward H_2S concentration. NaHS concentration: 0, 1, 2.5, 5, 7.5, 10 μм.

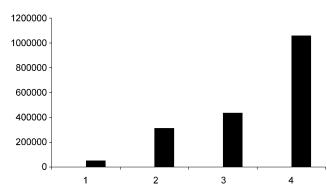


Figure 4. Fluorescence response of probe 1 to H₂S in plasma: 1) probe 1 only, 2) probe 1 + NaHS (50 μ M^[a], 2 μ M^[b]), 3) probe 1 + NaHS (100 μ M^[a], 4 μ M^[b]), 4) probe 1 + NaHS (500 μ M^[a], 21 μ M^[b]). [a] original concentration in plasma, [b] diluted concentration when fluorescence was recorded.

physiological responses of H₂S (10-600 μm).^[19-22] These plasma solutions were then diluted and incubated with probe 1. After 1 h, the mixture was diluted again with PBS solution and fluorescence signals were measured. As expected, strong fluorescence was observed in plasma solutions in the presence of NaHS (Figure 4). We noticed that the fluorescence intensity response to certain H₂S concentration obtained in plasma was lower than the signal obtained in pure buffer solutions. This is likely due to the fact that H₂S can be quickly scavenged by proteins present in plasma.^[18] Nevertheless, we conclude that probe 1 can be used for the selective detection of H₂S in complex biological systems such as plasma.

We also used cultured COS7 cells to investigate the potential of 1 for use in the detection of H₂S in cells. As shown in Figure 5, COS7 cells were incubated with compound 1 (100 μм) for 30 min, and we did not observe any fluorescent cells. Strong fluorescence in the cells was induced after treatment with sodium sulfide (250 µm). Thus, we conclude that probe 1 can be used for the detection of H₂S in cultured

In summary, we reported in this study a H₂S-mediated benzodithiolone formation under mild conditions. This reaction proved to be selective for H₂S and it did not proceed with other biological thiols such as cysteine and glutathione. Based

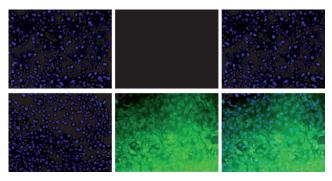


Figure 5. Fluorescence images of H₂S detection in COS7 cells using probe 1. COS7 cells on glass coverslips were incubated with 1 (100 μм) for 30 min, and then subjected to different treatments. Top row: control (no sodium sulfide was added); bottom row: cells treated with sodium sulfide (250 μм).

on this reaction, a fluorescent probe, that is, compound 1, was developed for the detection of H₂S. The efficiency of this probe was demonstrated in aqueous buffers and plasma, as well as in cells. Using this strategy, the concentration of H₂S can not only be measured by the fluorescence signal, but also be assessed from the analysis of the benzodithiolone product. We are now actively pursuing more specific H₂S fluorescent probes based on this new benzodithiolone formation and related reactions.

Received: June 22, 2011 Revised: July 22, 2011

Published online: September 6, 2011

Keywords: acylation · fluorescent probes · signal transduction ·

- [1] L. Li, P. Rose, P. K. Moore, Annu. Rev. Pharmacol. Toxicol. 2011, *51*, 169 – 187.
- [2] C. Szabó, Nat. Rev. Drug Discovery 2007, 6, 917 935.
- [3] E. Lowicka, J. Beltowski, *Pharmacol. Rep.* **2007**, *59*, 4–24.
- [4] H. Kimura, Amino Acids 2011, 41, 113-121.
- [5] M. H. Stipanuk, I. Ueki, J. Inherited Metab. Dis. 2011, 34, 17-32.
- [6] M. Whiteman, P. K. Moore, J. Cell. Mol. Med. 2009, 13, 488-507.
- [7] C. W. Leffler, H. Parfenova, J. H. Jaggar, R. Wang, J. Appl. Physiol. 2006, 100, 1065-1076.
- [8] C. Jacob, A. Anwar, T. Burkholz, *Planta Med.* 2008, 74, 1580-1592
- [9] O. Kabil, R. Banerjee, J. Biol. Chem. 2010, 285, 21903-21907.
- [10] K. R. Olson, Biochim. Biophys. Acta Bioenerg. 2009, 1787, 856-
- [11] J. Furne, A. Saeed, M. D. Levitt, Am. J. Physiol. Regul. Integr. Comp. Physiol. 2008, 295, R1479-R1485.
- [12] a) Y. Han, J. Qin, X. Chang, Z. Yang, Z. Du, Cell. Mol. Neurobiol. 2006, 26, 101-107; b) T. Ubuka, Analyt. Technol. Biomed. Life Sci. 2002, 781, 227-249; c) M. W. Warenycia, L. R. Goodwin, C. G. Benishin, R. J. Reiffenstein, D. M. Francom, J. D. Taylor, F. P. Dieken, Biochem. Pharmacol. 1989, 38, 973 -981.
- [13] A. Tangerman, J. Chromatogr. B 2009, 877, 3366-3377.
- [14] T. Ubuka, J. Chromatogr. B 2002, 781, 227–249.
- [15] J. E. Doeller, T. S. Isbell, G. Benavides, J. Koenitzer, H. Patel, R. P. Patel, J. R. Lancaster, Jr., Anal. Biochem. 2005, 341, 40-51.
- [16] T. Nagata, S. Kage, K. Kimura, K. Kudo, M. Noda, J. Forensic Sci. 1990, 35, 706-712.
- [17] a) P. K. Dasgupta, G. Zhang, J. Li, C. B. Boring, S. Jambunathan, R. Al-Horr, Anal. Chem. 1999, 71, 1400-1407; b) K. Toda, P. K. Dasgupta, J. Li, G. A. Tarver, G. M. Zarus, Anal. Chem. 2001, 73, 5716-5724; c) W. Trettnak, O. S. Wolfbeis, Fresenius Z. Anal. Chem. 1987, 326, 547-550; d) O. S. Wolfbeis, W. Trettnak, Spectrochim. Acta Part A 1987, 43, 405-408.
- [18] X. Shen, C. B. Pattillo, S. Pardue, S. C. Bir, R. Wang, C. G. Kevil, Free Radical Biol. Med. 2011, 50, 1021 – 1031.
- [19] A fluorescent probe of H₂S was recently reported: A. R. Lippert, E. J. New, C. J. Chang, J. Am. Chem. Soc. 2011, 133, 10078-
- [20] G. Yang, L. Wu, B. Jiang, B. Yang, J. Qi, K. Cao, Q. Meng, A. K. Mustafa, W. Mu, S. Zhang, S. H. Snyder, R. Wang, Science 2008, 322, 587 - 590.
- [21] A. Papapetropoulos, A. Pyriochou, Z. Altaany, G. Yang, A. Marazioti, Z. Zhou, M. G. Jeschke, L. K. Branski, D. N. Herndon, R. Wang, C. Szabo, Proc. Natl. Acad. Sci. USA 2009, 106, 21972 - 21977.
- [22] K. Abe, H. Kimura, J. Neurosci. 1996, 16, 1066-1071.